Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38499326

ABSTRACT

Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Rhabdoid Tumor , Child , Humans , Medulloblastoma/genetics , DNA Methylation/genetics , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , Epigenesis, Genetic/genetics , Cerebellar Neoplasms/genetics , DNA/metabolism
2.
Acta Neuropathol Commun ; 11(1): 176, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932833

ABSTRACT

As the progression of low-grade diffuse astrocytomas into grade 4 tumors significantly impacts patient prognosis, a better understanding of this process is of paramount importance for improved patient care. In this project, we analyzed matched IDH-mutant astrocytomas before and after progression to grade 4 from six patients (discovery cohort) with genome-wide sequencing, 21 additional patients with targeted sequencing, and 33 patients from Glioma Longitudinal AnalySiS cohort for validation. The Cancer Genome Atlas data from 595 diffuse gliomas provided supportive information. All patients in our discovery cohort received radiation, all but one underwent chemotherapy, and no patient received temozolomide (TMZ) before progression to grade 4 disease. One case in the discovery cohort exhibited a hypermutation signature associated with the inactivation of the MSH2 and DNMT3A genes. In other patients, the number of chromosomal rearrangements and deletions increased in grade 4 tumors. The cell cycle checkpoint gene CDKN2A, or less frequently RB1, was most commonly inactivated after receiving both chemo- and radiotherapy when compared to other treatment groups. Concomitant activating PDGFRA/MET alterations were detected in tumors that acquired a homozygous CDKN2A deletion. NRG3 gene was significantly downregulated and recurrently altered in progressed tumors. Its decreased expression was associated with poorer overall survival in both univariate and multivariate analysis. We also detected progression-related alterations in RAD51B and other DNA repair pathway genes associated with the promotion of error-prone DNA repair, potentially facilitating tumor progression. In our retrospective analysis of patient treatment and survival timelines (n = 75), the combination of postoperative radiation and chemotherapy (mainly TMZ) outperformed radiation, especially in the grade 3 tumor cohort, in which it was typically given after primary surgery. Our results provide further insight into the contribution of treatment and genetic alterations in cell cycle, growth factor signaling, and DNA repair-related genes to tumor evolution and progression.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Retrospective Studies , Glioma/genetics , Astrocytoma/genetics , Mutation , Temozolomide/therapeutic use , Genomics , Isocitrate Dehydrogenase/genetics
3.
J Cell Biochem ; 124(4): 533-544, 2023 04.
Article in English | MEDLINE | ID: mdl-36791278

ABSTRACT

The human G protein coupled membrane receptor (GPR17), the sensor of brain damage, is identified as a biomarker for many neurological diseases. In human brain tissue, GPR17 exist in two isoforms, long and short. While cryo-electron microscopy technology has provided the structure of the long isoform of GPR17 with Gi complex, the structure of the short isoform and its activation mechanism remains unclear. Recently, we theoretically modeled the structure of the short isoform of GPR17 with Gi signaling protein and identified novel ligands. In the present work, we demonstrated the presence of two distinct ligand binding sites in the short isoform of GPR17. The molecular docking of GPR17 with endogenous (UDP) and synthetic ligands (T0510.3657, MDL29950) found the presence of two distinct binding pockets. Our observations revealed that endogenous ligand UDP can bind stronger in two different binding pockets as evidenced by glide and autodock vina scores, whereas the other two ligand's binding with GPR17 has less docking score. The analysis of receptor-UDP interactions shows complexes' stability in the lipid environment by 100 ns atomic molecular dynamics simulations. The amino acid residues VAL83, ARG87, and PHE111 constitute ligand binding site 1, whereas site 2 constitutes ASN67, ARG129, and LYS232. Root mean square fluctuation analysis showed the residues 83, 87, and 232 with higher fluctuations during molecular dynamics simulation in both binding pockets. Our findings imply that the residues of GPR17's two binding sites are crucial, and their interaction with UDP reveals the protein's hidden signaling and communication properties. Furthermore, this finding may assist in the development of targeted therapies for the treatment of neurological diseases.


Subject(s)
Receptors, G-Protein-Coupled , Uridine Diphosphate , Humans , Ligands , Molecular Docking Simulation , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , Binding Sites , Protein Isoforms/metabolism
4.
J Biomol Struct Dyn ; 41(21): 12016-12025, 2023.
Article in English | MEDLINE | ID: mdl-36617957

ABSTRACT

Human mitochondria are the vital cell organelle acting as a storehouse of energy generation and diverse regulatory functions. Mitochondrial DNA comprises 93% coding region and 7% non-coding regions, in which the non-coding region hypothesized as responsible for signaling is our specific interest. Here, we explored the unknown functions of mitochondrial non-coding RNAs by studying their respective signaling pathways. We retrieved conserved motifs of interactions from known experimental protein-RNA complexes to model unknown mitochondrial ncRNA sequences. Our results provide the ncRNAs list and show their involvement in four crucial pathways, such as (i) Processing of Capped Intron-Containing Pre-mRNA, (ii) Spliceosome, (iii) Spliceosomal assembly, and (iv) RNA Polymerase II Transcription, respectively. The interactome analysis revealed that the SRSF2 and U2AF2 proteins interact with ncRNAs. Further, we have simulated the selected ncRNA-protein complexes in cell-like environmental conditions and found them stable in terms of energetics. Through our study, we have identified an apparent interaction of mitochondrial ncRNAs with proteins and their role in critical signaling pathways, providing new insights into mitochondrial ncRNA-dependent gene regulation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mitochondria , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Gene Expression Regulation
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361936

ABSTRACT

The idea of a digital twin has recently gained widespread attention. While, so far, it has been used predominantly for problems in engineering and manufacturing, it is believed that a digital twin also holds great promise for applications in medicine and health. However, a problem that severely hampers progress in these fields is the lack of a solid definition of the concept behind a digital twin that would be directly amenable for such big data-driven fields requiring a statistical data analysis. In this paper, we address this problem. We will see that the term 'digital twin', as used in the literature, is like a Matryoshka doll. For this reason, we unstack the concept via a data-centric machine learning perspective, allowing us to define its main components. As a consequence, we suggest to use the term Digital Twin System instead of digital twin because this highlights its complex interconnected substructure. In addition, we address ethical concerns that result from treatment suggestions for patients based on simulated data and a possible lack of explainability of the underling models.


Subject(s)
Machine Learning , Research Design , Humans , Big Data
6.
Sci Rep ; 12(1): 14083, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982066

ABSTRACT

Oligodendrogliomas are typically associated with the most favorable prognosis among diffuse gliomas. However, many of the tumors progress, eventually leading to patient death. To characterize the changes associated with oligodendroglioma recurrence and progression, we analyzed two recurrent oligodendroglioma tumors upon diagnosis and after tumor relapse based on whole-genome and RNA sequencing. Relapsed tumors were diagnosed as glioblastomas with an oligodendroglioma component before the World Health Organization classification update in 2016. Both patients died within 12 months after relapse. One patient carried an inactivating POLE mutation leading to a clearly hypermutated progressed tumor. Strikingly, both relapsed tumors carried focal chromosomal rearrangements in PTPRD and CNTNAP2 genes with associated decreased gene expression. TP53 mutation was also detected in both patients after tumor relapse. In The Cancer Genome Atlas (TCGA) diffuse glioma cohort, PTPRD and CNTNAP2 expression decreased by tumor grade in oligodendrogliomas and PTPRD expression also in IDH-mutant astrocytomas. Low expression of the genes was associated with poor overall survival. Our analysis provides information about aggressive oligodendrogliomas with worse prognosis and suggests that PTPRD and CNTNAP2 expression could represent an informative marker for their stratification.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Oligodendroglioma , Astrocytoma/pathology , Biomarkers , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Membrane Proteins/genetics , Mutation , Neoplasm Recurrence, Local , Nerve Tissue Proteins/genetics , Oligodendroglioma/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
7.
Apoptosis ; 27(7-8): 482-508, 2022 08.
Article in English | MEDLINE | ID: mdl-35713779

ABSTRACT

Programmed cell death is considered a key player in a variety of cellular processes that helps to regulate tissue growth, embryogenesis, cell turnover, immune response, and other biological processes. Among different types of cell death, apoptosis has been studied widely, especially in the field of cancer research to understand and analyse cellular mechanisms, and signaling pathways that control cell cycle arrest. Hallmarks of different types of cell death have been identified by following the patterns and events through microscopy. Identified biomarkers have also supported drug development to induce cell death in cancerous cells. There are various serological and microscopic techniques with advantages and limitations, that are available and are being utilized to detect and study the mechanism of cell death. The complexity of the mechanism and difficulties in distinguishing among different types of programmed cell death make it challenging to carry out the interventions and delay its progression. In this review, mechanisms of different forms of programmed cell death along with their conventional and unconventional methods of detection of have been critically reviewed systematically and categorized on the basis of morphological hallmarks and biomarkers to understand the principle, mechanism, application, advantages and disadvantages of each method. Furthermore, a very comprehensive comparative analysis has been drawn to highlight the most efficient and effective methods of detection of programmed cell death, helping researchers to make a reliable and prudent selection among the available methods of cell death assay. Conclusively, how programmed cell death detection methods can be improved and can provide information about distinctive stages of cell death detection have been discussed.


Subject(s)
Apoptosis , Signal Transduction , Apoptosis/physiology , Biomarkers , Cell Death
8.
Apoptosis ; 27(3-4): 283-295, 2022 04.
Article in English | MEDLINE | ID: mdl-35129730

ABSTRACT

P2Y receptors belong to the large superfamily of G-protein-coupled receptors and play a crucial role in cell death and survival. P2Y1 receptor has been identified as a marker for prostate cancer (PCa). A previously unveiled selective P2Y1 receptor agonist, the indoline-derived HIC (1-(1-((2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile), induces a series of molecular and biological responses in PCa cells PC3 and DU145, but minimal toxicity to normal cells. Here, we evaluated the combinatorial effect of HIC with abiraterone acetate (AA) targeted on androgen receptor (AR) on the inhibition of PCa cells. Here, the presence of HIC and AA significantly inhibited cell proliferation of PC3 and DU145 cells with time-dependent manner as a synerfistic combination. Moreover, it was also shown that the anticancer and antimetastasis effects of the combinratorial drugs were noticed through a decrease in colony-forming ability, cell migration, and cell invasion. In addition, the HIC + AA induced apoptotic population of PCa cells as well as cell cycle arrest in G1 progression phase. In summary, these studies show that the combination of P2Y1 receptor agonist, HIC and AR inhibitor, AA, effectively improved the antitumor activity of each drug. Thus, the combinatorial model of HIC and AA should be a novel and promising therapeutic strategy for treating prostate cancer.


Subject(s)
Abiraterone Acetate , Prostatic Neoplasms , Purinergic P2Y Receptor Agonists , Abiraterone Acetate/pharmacology , Abiraterone Acetate/therapeutic use , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Indoles/analysis , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Purinergic P2Y Receptor Agonists/therapeutic use , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Purinergic P2Y1
9.
Life Sci ; 291: 120307, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35016881

ABSTRACT

AIM: Glioblastoma multiforme (GBM) is the most common and aggressive primary adult brain tumor. GBM is characterized by a heterogeneous population of cells that are resistant to chemotherapy. Recently, we have synthesized CHBC, a novel indole derivative targeted to GBM biomarker G-protein-coupled receptor 17 and inhibitor of GBM cells. In this study, CHBC was further investigated to characterize the efficiency of this agonist at the molecular level and its underlying mechanism in GBM cell death induction. MATERIALS AND METHODS: The effect of CHBC and TMZ was determined using time dependent inhibitor assay in glioblastoma cells, LN229 and SNB19. Drug induced cell cycle arrest was measured using PI staining followed by image analysis. The induction of apoptosis and mechanism of action of CHBC was studied using apoptosis, caspase 3/7 and mitochondrial membrane permeability assays. Modulation of the key genes involved in MAPK signaling pathway was also measured using immunoblotting array. KEY FINDINGS: The inhibitory kinetic study has revealed that CHBC inhibited SNB19 and LN229 cell growth in a time-dependent manner. Furthermore, CHBC with the IC50 of 85 µM, mediated cell death through an apoptosis mechanism in both studied cell lines. The study also has revealed that CHBC targets GPR17 leading to the induction of apoptosis via the activation of Caspase 3/7 and dysfunction of mitochondrial membrane potential. In addition, CHBC treatment led to marked G2/M cell cycle arrest. The protein array has confirmed the anticancer effect of CHBC by the disruption of the mitogen-activated protein kinase pathway (MAPK). SIGNIFICANCE: Taken together, these results demonstrated that CHBC induced G2/M cell cycle arrest and apoptosis by disrupting MAPK signaling in human glioblastoma cells. This study concludes that CHBC represent a class of compounds for treating glioblastoma.


Subject(s)
Glioblastoma , Indoles , Receptors, G-Protein-Coupled , Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Indoles/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Signal Transduction/drug effects , Temozolomide/pharmacology
10.
J Biomol Struct Dyn ; 40(6): 2586-2599, 2022 04.
Article in English | MEDLINE | ID: mdl-33140689

ABSTRACT

Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM. Communicated by Ramaswamy H. Sarma.


Subject(s)
Brain Neoplasms , Glioblastoma , Signal Transduction , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Docking Simulation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Transcriptome
11.
J Biomol Struct Dyn ; 40(16): 7545-7554, 2022 10.
Article in English | MEDLINE | ID: mdl-33749517

ABSTRACT

Epidermal growth factor receptors are constitutively overexpressed in breast cancer cells, which in turn stimulate many downstream signaling pathways that are involved in many carcinogenic processes. This makes EGFR a striking target for cancer therapy. This study focuses on the EGFR kinase domain inactivation by novel synthesized indoline derivatives. The compounds used are N-(2-hydroxy-5-nitrophenyl (4'-methyl phenyl) methyl) indoline (HNPMI), alkylaminophenols - 2-((3,4-Dihydroquinolin-1(2H)-yl) (p-tolyl) methyl) phenol (THTMP) and 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP). To get a clear insight into the molecular interaction of EGFR and the three compounds, we have used ADME/Tox prediction, Flexible docking analysis followed by MM/GB-SA, QM/MM analysis, E-pharmacophore mapping of the ligands and Molecular dynamic simulation of protein-ligand complexes. All three compounds showed good ADME/Tox properties obeying the rules of drug-likeliness and showed high human oral absorption. Molecular docking was performed with the compounds and EGFR using Glide Flexible docking mode. This showed that the HNPMI was best among the three compounds and had interactions with key residue Lys 721. The protein-ligand complexes were stable when simulated for 100 ns using Desmond software. The interactions were further substantiated using QM/MM analysis and MM-GB/SA analysis in which HNPMI was scored as the best molecule. All the analyses were carried out with a reference molecule-Gefitinib which is a known standard inhibitor of EGFR. Thus, the study elucidates the potential role of the indoline derivatives as an anti-cancer agent against breast cancer by effectively inhibiting EGFR.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , ErbB Receptors , ErbB Receptors/chemistry , Female , Humans , Indoles , Ligands , Molecular Docking Simulation , Phenols
12.
J Biomol Struct Dyn ; 40(23): 12908-12916, 2022.
Article in English | MEDLINE | ID: mdl-34542380

ABSTRACT

The human Guanine Protein coupled membrane Receptor 17 (hGPR17), an orphan receptor that activates uracil nucleotides and cysteinyl leukotrienes is considered as a crucial target for the neurodegenerative diseases. Yet, the detailed molecular interaction of potential synthetic ligands of GPR17 needs to be characterized. Here, we have studied a comparative analysis on the interaction specificity of GPR17-ligands with hGPR17 and human purinergic G protein-coupled receptor (hP2Y1) receptors. Previously, we have simulated the interaction stability of synthetic ligands such as T0510.3657, AC1MLNKK, and MDL29951 with hGPR17 and hP2Y1 receptor in the lipid environment. In the present work, we have comparatively studied the protein-ligand interaction of hGPR17-T0510.3657 and P2Y1-MRS2500. Sequence analysis and structural superimposition of hGPR17 and hP2Y1 receptor revealed the similarities in the structural arrangement with the local backbone root mean square deviation (RMSD) value of 1.16 Å and global backbone RMSD value of 5.30 Å. The comparative receptor-ligand interaction analysis between hGPR17 and hP2Y1 receptor exposed the distinct binding sites in terms of geometrical properties. Further, the molecular docking of T0510.3657 with the hP2Y1 receptor have shown non-specific interaction. The experimental validation also revealed that Gi-coupled activation of GPR17 by specific ligands leads to the adenylyl cyclase inhibition, while there is no inhibition upon hP2Y1 activation. Overall, the above findings suggest that T0510.3657-GPR17 binding specificity could be further explored for the treatment of numerous neuronal diseases. Communicated by Ramaswamy H. Sarma.


Subject(s)
Receptors, G-Protein-Coupled , Humans , Receptors, Purinergic P2Y1 , Molecular Docking Simulation , Ligands , Receptors, G-Protein-Coupled/metabolism , Binding Sites
13.
Cancers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34680236

ABSTRACT

Prognostic biomarkers can have an important role in the clinical practice because they allow stratification of patients in terms of predicting the outcome of a disorder. Obstacles for developing such markers include lack of robustness when using different data sets and limited concordance among similar signatures. In this paper, we highlight a new problem that relates to the biological meaning of already established prognostic gene expression signatures. Specifically, it is commonly assumed that prognostic markers provide sensible biological information and molecular explanations about the underlying disorder. However, recent studies on prognostic biomarkers investigating 80 established signatures of breast and prostate cancer demonstrated that this is not the case. We will show that this surprising result is related to the distinction between causal models and predictive models and the obfuscating usage of these models in the biomedical literature. Furthermore, we suggest a falsification procedure for studies aiming to establish a prognostic signature to safeguard against false expectations with respect to biological utility.

14.
Future Med Chem ; 13(21): 1845-1864, 2021 11.
Article in English | MEDLINE | ID: mdl-34505540

ABSTRACT

Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods & results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells' migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Purinergic P2Y1/metabolism , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
15.
Int J Biol Macromol ; 189: 142-150, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34425116

ABSTRACT

Prostate cancer is a heterogeneous, slow growing asymptomatic cancer that predominantly affects man. A purinergic G-protein coupled receptor, P2Y1R, is targeted for its therapeutic value since it plays a crucial role in many key molecular events of cancer progression and invasion. Our previous study demonstrated that indoline derivative, 1 ((1-(2-Hydroxy-5-nitrophenyl) (4-hydroxyphenyl) methyl)indoline-4­carbonitrile; HIC), stimulates prostate cancer cell (PCa) growth inhibition via P2Y1R. However, the mode of interaction of P2Y1R with HIC involved in this process remains unclear. Here, we have reported the molecular interactions of HIC with P2Y1R. Molecular dynamics simulation was performed that revealed the stable specific binding of the protein-ligand complex. In vitro analysis has shown increased apoptosis of PCa-cells, PC3, and DU145, upon specific interaction of P2Y1R-HIC. This was further validated using siRNA analysis that showed a higher percentage of apoptotic cells in PCa-cells transfected with P2Y-siRNA-MRS2365 than P2Y-siRNA-HIC treatment. Decreased mitochondrial membrane potential (MMP) activity and reduced glutathione (GSH) level show their role in P2Y1R-HIC mediated apoptosis. These in silico and in vitro results confirmed that HIC could induce mitochondrial apoptotic signaling through the P2Y1R activation. Thus, HIC being a potential ligand upon interaction with P2Y1R might have therapeutic value for the treatment of prostate cancer.


Subject(s)
Apoptosis , Indoles/pharmacology , Prostatic Neoplasms/pathology , Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2Y1/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Glutathione/metabolism , Humans , Indoles/chemistry , Male , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Molecular Dynamics Simulation , Receptors, Purinergic P2Y1/chemistry
16.
Cells ; 10(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34440745

ABSTRACT

Drug resistance and tumor heterogeneity limits the therapeutic efficacy in treating glioblastoma, an aggressive infiltrative type of brain tumor. GBM cells develops resistance against chemotherapeutic agent, temozolomide (TMZ), which leads to the failure in treatment strategies. This enduring challenge of GBM drug resistance could be rational by combinatorial targeted therapy. Here, we evaluated the combinatorial effect of phenolic compound (2-(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol (THTMP), GPR17 agonist 2-({5-[3-(Morpholine-4-sulfonyl)phenyl]-4-[4-(trifluoromethoxy)phenyl]-4H-1,2,4-triazol-3-yl}sulfanyl)-N-[4-(propan-2-yl)phenyl]acetamide (T0510.3657 or T0) with the frontline drug, TMZ, on the inhibition of GBM cells. Mesenchymal cell lines derived from patients' tumors, MMK1 and JK2 were treated with the combination of THTMP + T0, THTMP + TMZ and T0 + TMZ. Cellular migration, invasion and clonogenicity assays were performed to check the migratory behavior and the ability to form colony of GBM cells. Mitochondrial membrane permeability (MMP) assay and intracellular calcium, [Ca2+]i, assay was done to comprehend the mechanism of apoptosis. Role of apoptosis-related signaling molecules was analyzed in the induction of programmed cell death. In vivo validation in the xenograft models further validates the preclinical efficacy of the combinatorial drug. GBM cells exert better synergistic effect when exposed to the cytotoxic concentration of THTMP + T0, than other combinations. It also inhibited tumor cell proliferation, migration, invasion, colony-forming ability and cell cycle progression in S phase, better than the other combinations. Moreover, the combination of THTMP + T0 profoundly increased the [Ca2+]i, reactive oxygen species in a time-dependent manner, thus affecting MMP and leading to apoptosis. The activation of intrinsic apoptotic pathway was regulated by the expression of Bcl-2, cleaved caspases-3, cytochrome c, HSP27, cIAP-1, cIAP-2, p53, and XIAP. The combinatorial drug showed promising anti-tumor efficacy in GBM xenograft model by reducing the tumor volume, suggesting it as an alternative drug to TMZ. Our findings indicate the coordinated administration of THTMP + T0 as an efficient therapy for inhibiting GBM cell proliferation.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Phenols/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Calcium/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Movement/drug effects , Drug Synergism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Inbred BALB C , Phenols/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Temozolomide/pharmacology , Temozolomide/therapeutic use
17.
Front Genet ; 12: 649429, 2021.
Article in English | MEDLINE | ID: mdl-34367234

ABSTRACT

High-throughput technologies do not only provide novel means for basic biological research but also for clinical applications in hospitals. For instance, the usage of gene expression profiles as prognostic biomarkers for predicting cancer progression has found widespread interest. Aside from predicting the progression of patients, it is generally believed that such prognostic biomarkers also provide valuable information about disease mechanisms and the underlying molecular processes that are causal for a disorder. However, the latter assumption has been challenged. In this paper, we study this problem for prostate cancer. Specifically, we investigate a large number of previously published prognostic signatures of prostate cancer based on gene expression profiles and show that none of these can provide unique information about the underlying disease etiology of prostate cancer. Hence, our analysis reveals that none of the studied signatures has a sensible biological meaning. Overall, this shows that all studied prognostic signatures are merely black-box models allowing sensible predictions of prostate cancer outcome but are not capable of providing causal explanations to enhance the understanding of prostate cancer.

18.
Cancers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34359676

ABSTRACT

Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K-Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0-GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.

19.
J Med Chem ; 64(15): 10908-10918, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34304559

ABSTRACT

The discovery of a potential ligand-targeting G protein-coupled receptor 17 (GPR17) is important for developing chemotherapeutic agents against glioblastoma multiforme (GBM). We used the integration of ligand- and structure-based cheminformatics and experimental approaches for identifying the potential GPR17 ligand for GBM treatment. Here, we identified a novel indoline-derived phenolic Mannich base as an activator of GPR17 using molecular docking of over 6000 indoline derivatives. One of the top 10 hit molecules, CHBC, with a glide score of -8.390 was synthesized through a multicomponent Petasis borono-Mannich reaction. The CHBC-GPR17 interaction leads to a rapid decrease of cAMP and Ca2+. CHBC exhibits the cytotoxicity effect on GBM cells in a dose-dependent manner with an IC50 of 85 µM, whereas the known agonist MDL29,951 showed a negligible effect. Our findings suggest that the phenolic Mannich base could be a better GPR17 agonist than MDL29,951, and further uncovering their pharmacological properties could potentiate an inventive GBM treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Indoles/pharmacology , Receptors, G-Protein-Coupled/agonists , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Indoles/chemical synthesis , Indoles/chemistry , Ligands , Molecular Structure , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
20.
Int J Mol Sci ; 22(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419230

ABSTRACT

Glioblastoma (GBM) is the most common malignant brain tumor and its malignant phenotypic characteristics are classified as grade IV tumors. Molecular interactions, such as protein-protein, protein-ncRNA, and protein-peptide interactions are crucial to transfer the signaling communications in cellular signaling pathways. Evidences suggest that signaling pathways of stem cells are also activated, which helps the propagation of GBM. Hence, it is important to identify a common signaling pathway that could be visible from multiple GBM gene expression data. microRNA signaling is considered important in GBM signaling, which needs further validation. We performed a high-throughput analysis using micro array expression profiles from 574 samples to explore the role of non-coding RNAs in the disease progression and unique signaling communication in GBM. A series of computational methods involving miRNA expression, gene ontology (GO) based gene enrichment, pathway mapping, and annotation from metabolic pathways databases, and network analysis were used for the analysis. Our study revealed the physiological roles of many known and novel miRNAs in cancer signaling, especially concerning signaling in cancer progression and proliferation. Overall, the results revealed a strong connection with stress induced senescence, significant miRNA targets for cell cycle arrest, and many common signaling pathways to GBM in the network.


Subject(s)
Aging/genetics , Brain Neoplasms/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , MicroRNAs/genetics , Algorithms , Gene Ontology , Gene Regulatory Networks , Humans , Models, Genetic , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...